Mark Scheme - 4.8 Organic Synthesis and Analysis

1.	(a)	Chror	mophore	[1]	
	(b)	(i)	Melting temperature lower than literature value / melting occurs over a		
			temperature range	[1]	
		(ii)	Identify percentage or amount of impurities (1)		
			Identify the number of compounds present or number of impurities	(1) [2]	
	(c)	(i)	Acidified potassium dichromate (1)		
			Heat and distil (1) do not accept 'reflux'	[2]	
		(ii)	M_r of phenylmethanol = 108.08 M_r of benzenecarbaldehyde = 10	6.06 (1)	
			100% conversion would be 10.0 \div 108.08 \times 106.06 = 9.815g (1)		
			86% yield = 9.815 × 86 ÷ 100 = 8.44g (1)	[3]	
		(iii)	Two resonances in the range 5.8-7.0 ppm (1)		
			These are doublets (1)		
			One singlet at around 11.0 ppm (1)		
			All resonances have the same area (1)	[4]	

Total [13]

- (a) CH₃CH(CH₃)CH₂Cl (1) AlCl₃ / FeCl₃ (1) Room temperature / in the dark (1) [3]
- (b) (i) 2,4-DNP (1) Orange precipitate (1) [2]
 - (ii) Tollen's reagent (1) Silver mirror with C, no reaction with B (1) [2]
- Optical isomerism is where a molecule and its mirror image are different / nonsuperimposable (1)

Compound C has a chiral centre / 4 different groups attached to one carbon atom (1)

$$\begin{pmatrix} H_3C \\ H_3C \\ CH \\ CH_2 \end{pmatrix} CH_3 \\ CH_3 \\ CH_3 \\ CH_2 \end{pmatrix} CH_3 \\ CH_2 \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \\ CH_5 \\$$

The two isomers rotate the plane of polarised light in opposite directions (1) [4]

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate (1) [1]

- (d) Dilute acid (1) heat (1) hydrolysis (1) [3]
- (e) Acidified potassium dichromate (VI) (1) / heat (1)

One step reactions are generally better as they have a better yield / there is waste in each stage (1)

Two step process may be cheaper / use more sustainable reagents/ may give a better yield in this case / produce less harmful waste materials / potassium dichromate may react with other parts of the molecule as well / may be easier to separate product (1)

Do not credit same idea twice e.g. if 'better yield' gains first mark, a different point is required to gain second mark [4]

QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

Total [20]

Total [12]

4.

(ii) Find a use for the calcium sulfate

[1]

(b) Total volume of aqueous sodium hydroxide needed = $\frac{26.40 \times 250}{25.00}$ = 264.0 cm³ (1)

from the graph this is equivalent to 0.011 mole of the acid (1)

$$\therefore M_r \text{ of the acid} = \underbrace{\frac{\text{mass}}{\text{no. of moles}}} = \underbrace{\frac{2.31}{0.011}} = 210 \quad (1)$$

$$C_6H_8O_7$$
. $n H_2O = 210$
 \uparrow
 $192 : n = 18$ (1)

since
$$M_r$$
 of water is 18 $n = 1$ (1)

[5]

- (c) The two 'ends' of the double bond have different groups bonded to the carbon atoms (of the double bond) / they have different structural formulae, so cannot be stereo / geometric isomers [1]
- (d) eg sodium ethanoate / ethanoic acid (1) methane (1) [2]

(e)
$$C_5H_6O_5 \rightarrow CH_3COCH_3 + 2CO_2$$
 [1]

(f)

[1]

(g) (Fractional) distillation / (preparative) gas chromatography / HPLC

[1]

(h) eg An optically active isomer that will rotate the plane of polarised light
/ an isomer with a chiral centre

[1]

 (ii) An equimolar mixture of both enantiomers (that has no apparent effect on the plane of polarised light)

[1]

Total [15]

(a) (i) A compound that can rotate the plane of polarised light. [1]

(iv) Reflux / heat with H₂O/H⁺ [1]

(v) It contains an equal amount of the two enantiomers / it is a racemic mixture (1)

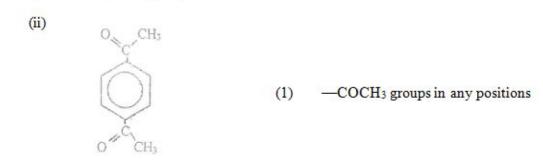
The rotating effect of one form exactly cancels out the effect of the other (1) [2]

(ii) H₃C—C—COOH

(c) (i) 2-aminopropanoic acid [1]

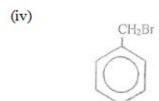
(ii) Nitrous acid / nitric(III) acid / HNO₂ [1]

(iii) It exists as a zwitterion (1)
strong electrostatic attractions / ionic bonds between different zwitterions (1)


[2]

Total [12]

[1]


[1]

- (a) (i) $CH_3CH_2CH_2CH_3 + Cl_2 \rightarrow CH_3CH_2CH_2CH_2CH_2Cl_1 + HCl_1$ [1]
 - (ii) CH₃CH₂CH₂CHCH₃ [1]
- (b) (Anhydrous) aluminium chloride / iron(III) chloride allow AlCl3 / FeCl3 [1]
- (c) (i) orange / red precipitate [1]

It must contain a C=O group but it is not an aldehyde as it does not react with Tollens' reagent (1) [2]

- (d) (i) (Alkaline) potassium manganate(VII) (solution) allow $KMnO_4 / MnO_4^-$ [1]
 - (ii) Dilute acid allow HCl / H⁺ [1]
 - (iii) Lithium tetrahydridoaluminate(III)/lithium aluminium hydride allow LiAlH4 [1]

(e) Only the infrared spectrum of benzoic acid would have a peak at 1650–1750 cm⁻¹ (1)

This is due to the carbonyl group present in the benzoic acid (1) [2]

Total [12]

(b) Moles of calcium carbide = 500/64.1 = 7.80 (1)

Moles of ethyne = 7.80

Volume of ethyne = $7.80 \times 24.0 = 187 \text{ (dm}^3\text{)}$ (1) [2]

(c) If the process is endothermic left to right then it needs to absorb energy

- hence the high temperature / endothermic reactions need a high temperature [1]

Curly arrows (1), full (1) and partial charges (1) [3]

(f) Any two for (1) each
energy costs / cost of catalyst / problems of separation of products /
time taken / availability of starting materials / percentage yield /
atom economy / relative health and safety [2]

(g)
$$C_6H_5 - C \equiv C - CH_2 - CH_3$$
 (1) C_1H_1 (1) [2]

(ii) I sulfuric acid / H₂SO₄ / phosphoric acid / H₃PO₄ / Al₂O₃ [1]

II 3-hydroxypropanoic acid does not show a C = C absorption at 1620-1670 cm⁻¹ but this is present in propenoic acid [1]

Total [16]

8.

(a) (i) 2 mol of ethanol gives 1 mol of ethoxyethane (1)

Moles of ethanol =
$$\frac{69}{46}$$
 = 1.5

- :. Moles of ethoxyethaneif theoretical yield = 0.75
- :. Moles of ethoxyethaneif 45% yield = $0.75 \times 0.45 = 0.34$ (1)

Mass of ethoxyethane = $0.34 \times 74 = 25g$ (1) allow error carried forward

[3]

[1]

(ii) Ethene / C₂H₄

(iii)
$$H H$$

 $H - C - C - Br$ $H - C - CH_2 - CH_3$ products

- (1) for correct curly arrows (1) for correct δ^+ and δ^- [2]
- (iv) They need to have an N-H/O-H/F-H bond/a highly electronegative atom bonded to hydrogen [1]
- (b) (i) For example

Accept any polybrominated species Do not accept a monobrominated species

- (ii) Bromine decolorised / orange to colourless / white solid [1]
- (c) Reagent Iron(III) chloride solution / FeCl₃ (1)

 Observation Purple coloration / solution (1) [2]
- (d) (i) C₁₀H₁₂O₁ [1]

(e) Displayed formula, for example

$$HOOC - CH_2 - CH_2 - CH_3$$
 (1)

Functional group carboxylic acid (1) [2]

Total [15]

(a)	(i)	Α	[1]
	(ii)	D	[1]
	(iii)	С	[1]
	(iv)	С	[1]
(b)	(i)	Nucleophilic substitution	[1]
	(ii)	The C–Cl bond in chlorobenzene is stronger than in 1-chlorobutane (1) due to delocalization of electron density from the ring with the bond (1)	
		OR	
		Delocalised electrons in chlorobenzene (1) repel lone pair of electrons on nucleophile / ammonia (1)	[2]
	(iii)	C ₄ H ₉ NH ₂ + CH ₃ COCI	[1]
	(iv)	I Tin and concentrated hydrochloric acid (1)	
		Add sodium hydroxide (after cooling) (1)	
		Steam distillation to separate the product (1)	[3]
		II C₅H₅NN⁺CI⁻	[1]
		III Azo dye / azo compound	[1]

Total [13]

- (Fractional) distillation / (preparative) gas chromatography / HPLC / TLC (a) (i) column chromatography / solvent extraction [1]
 - the fragmentation pattern would be different / valid examples given (ii) [1]
 - (iii) I

$$CH_2NH_2 + CH_3C CI \longrightarrow CH_2 - N - C CH_3 + HCI$$
 [1]

II Heated electrically / by a naked flame with a water bath (1) Add compound G to the ethanol until the hot ethanol will (just) not dissolve any more solute (1)

Filter hot (1)

Allow to cool (1)

Filter (1)

Dry in air / window sill / < 60 °C in an oven (1)

[5]

Maximum 4 out of 5 total if second marking point not given Note 5 marks maximum here

QWC Information organised clearly and coherently, using specialist vocabulary where appropriate

[1]

I The amine is reacted with sodium nitrite / HCl(aq) or nitrous acid (1) (iv) at a temperature of < 10 °C (1)

[2]

II

$$OH OH$$

$$N = N - CH^3$$

(b) (i) Nucleophilic addition (1)

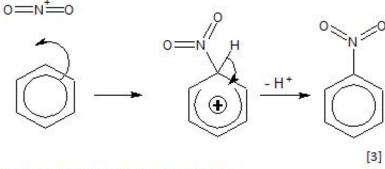
Accept a mechanism that shows HCN polarisation and nucleophilic addition as a concerted process

(ii) Chromophores (1)
The colour will be black (1) as the compound absorbs blue / other colours (1)

[3]

Total [20]

11.


(a) (i) Both molecules have lone pairs on nitrogen (1)

The lone pairs can form (coordinate) bonds with H+ ions (1) [2]

- (ii) Lone pair on N in phenylamine is delocalised over benzene ring (1) therefore less able to accept H⁺ (1)
 [2]
- (iii) I Arrow in first step (1)

 Cation structure in second step (1)

 Arrow in second step (1)

II (fractional) distillation / steam distillation [1]

III Sn and conc. HCl (1) followed by NaOH (1) [2]

(b) (i)

(ii) Addition polymerisation makes one product only /
 Condensation produces one product plus a small molecule like water (1)

Addition polymerisation uses one starting material / Condensation polymerisation has two different starting materials (1)

Addition polymerisation involves monomer with one functional group /
Condensation polymerisation involves monomer with two functional groups
(1)

(max 2) [2]

(iii) Alanine has strong (electrostatic) forces between the zwitterions (1)

Butanoic acid has hydrogen bonding between molecules /
electrostatic forces in alanine are stronger than forces in butanoic acid

(1)

(iv) Soda lime (1) CH₃CH₂NH₂ (1) [2]

Total [20]